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Abstract 1. Introduction 
A stochastic interest rate generator is a valuable 

actuarial tool. The parameters that specify a stochastic 
model of interest rates can be adjusted to make the 
model arbitrage-free, or they can be adjusted to accom- 
modate an individual investor's subjective views. The 
arbitrage-free settings of the parameters must be used 
when pricing streams of interest-rate-contingent cash 
flows, for example, when establishing the risk-neutral 
position for asset-liability management. The real-world 
settings of the parameters should be used when evaluat- 
ing the risk-reward tradeoffs inherent in deviating from 
the risk-neutral position. 

Without relying on formulas, this paper presents the 
important concepts underlying the theory of arbitrage- 
free pricing of interest-rate-contingent cash flows: 
absence of opportunities for riskless arbitrage; com- 
pleteness of markets; relative prices that do not depend 
on individual investors' subjective views or risk prefer- 
ences; and expected-value pricing in the risk-neutral 
world. Using these concepts, the paper then describes 
the steps required to build continuous stochastic models 
of interest rates, including models that are either par- 
tially or fully arbitrage free. After studying the paper, 
all actuaries should be able to comprehend better some 
of the literature in this important subject area. Then, 
after studying some of the technical references, many 
actuaries should be in a position to begin to build their 
own practical models. 

In recent years, the literature of financial economics 
has featured papers on how to value interest-rate-con- 
tingent claims by means of option-pricing models (for 
example, [2], [8], [11], [14], and [18]). The most impor- 
tant applications include the pricing of fixed-income 
instruments with embedded options: callable corporate 
bonds, mortgage-backed securities subject to prepay- 
ment risk, collateralized mortgage obligations (CMOs) 
created by allocating the cash flows arising from pools 
of mortgages to different classes of bonds, floating-rate 
and other indexed bonds, and various hedging instru- 
ments, such as futures, options, and interest rate swaps, 
caps, and floors. Life insurers have begun to use option- 
pricing models to value complicated interest-rate-con- 
tingent liabilities that contain embedded options, such 
as the insurer's right to reset periodically the interest 
rate credited to a policyholder's account, or the policy- 
holder's right to take loans at below-market interest 
rates or to surrender a policy for a cash amount that 
does not fully take into account the level of interest 
rates prevailing at the time of surrender. In the U.S., the 
capital adequacy of depository institutions (banks and 
thrifts) is now measured against risk-based capital 
guidelines that include an interest rate risk component, 
for which an option-pricing model is needed to value 
mortgage-related assets properly. 
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Unfortunately, the papers about option pricing are 
often very technical, leaving almost all actuaries frus- 
trated, because they recognize the importance of utilizing 
option-based models, but they do not understand the the- 
ory well enough to be able to write computer programs to 
implement it. I have made no attempt in this paper to 
review the literature on the subjects of interest rate mod- 
els and option pricing. That would have diluted my 
efforts in achieving the paper's objective of bringing the 
actuary who is not an expert in either financial economics 
or in the mathematics of stochastic processes (martin- 
gales and stochastic calculus, in particular) comfortably 
to the point of understanding how a useful model for val- 
uing streams of interest-rate-contingent cash flows can be 
built. Several routes could have been followed to achieve 
this objective. After much consideration, I decided to 
develop the paper without formulas, with one exception: 
in offering an example of a continuous stochastic process 
for interest rates, it seemed easier to write down a few 
equations than to write elaborately around them. After 
reading this paper, and perhaps relying to some extent on 
the references cited, mathematically inclined actuaries 
will likely be able to construct stochastic interest rate 
generators appropriate to their needs. Other actuaries, if 
unable to build such generators themselves, should at 
least be able to apply the generators in solving asset and 
liability valuation problems. The principal goal of this 
paper is to discuss thoroughly the concepts underlying 
the valuation of interest-rate-contingent streams of cash 
flows, not to provide a set of mathematical recipes that 
can be programmed into an option-pricing model on a 
computer. 

Central to the problem of valuing interest-rate-con- 
tingent cash flows is the creation of an appropriate set 
of interest rate paths or scenarios. In fact, once a theo- 
retically sound stochastic interest rate generator has 
been constructed, all the applications described above 
can be handled. Each application involves projecting 
the relevant cash flows along a path, then discounting 
the projected cash flows for the path, using the short- 
term interest rates along the path, to a present value 
number for the path, and finally averaging the present 
value numbers for all paths to obtain the arbitrage-free 
value of the cash-flow stream. The rigorous proof that 
such a simple procedure works is highly mathematical 
(see, for example, the texts [12] and [16]). However, 
one can develop an intuitive feel for the validity of the 
approach without having to face intimidating mathe- 
matics. In this paper, I offer some explanation that 
serves to build such intuition, but not so much as to dis- 

tract us from the main goal of laying the foundation for 
constructing arbitrage-free stochastic interest rate gen- 
erators. 

Section 2 introduces the concepts of current-coupon 
yields, spot rates of interest, and forward rates of inter- 
est, and describes the relationships among them. Sec- 
tion 3 briefly describes both discrete-state and 
continuous-state models of interest rates and debates 
the strengths and weaknesses of each. Section 4 intro- 
duces several key concepts from financial economics, 
and then indicates how the assumptions of complete 
markets and the lack of riskless arbitrage opportunities 
allow one to move into a special equilibrium world 
characterized as risk neutral, in which the valuation of 
interest-rate-contingent cash flows becomes a straight- 
forward expected-value problem. Section 5 fulfills the 
purpose of the paper by documenting how to construct a 
path generator based on a continuous process, and Sec- 
tion 6 then indicates how such a generator can be used. 
Section 7 lists the key conclusions of the paper. 

2. Yield Curve and Term Structure 
This paper focuses on interest rates for instruments 

free from default and call risk, which, in the financial 
markets in the U.S., means U.S. Treasury bills, notes, 
and bonds. All other investment-grade fixed-income 
financial assets are priced relative to U.S. Treasury obli- 
gations. There are several equivalent ways to express 
the set of yields applying to risk-free debt obligations of 
various maturities. The most common, because it is the 
basis on which traders make quotations, is the concept 
of the yield curve. The yield curve is a graph that 
depicts the yields of hypothetical U.S. Treasury obliga- 
tions that trade at a price of par as a function of their 
terms to maturity in years. By convention, the yields on 
such par bonds are expressed as annual rates of interest 
payable semiannually, referred to as bond-equivalent 
yields, because bonds issued in the U.S. usually pay 
coupons semiannually. The hypothetical bonds trading 
at a price of par that constitute the yield curve are said 
to have current coupons. 

Another way to express the information contained in 
the yield curve is to compute the yields of zero-coupon 
bonds of various maturities from the yields of all cur- 
rent-coupon bonds. A unit par value zero-coupon bond 
having a maturity of n years pays its holder $1 at the 
end of n years and nothing before then. A zero-coupon 
bond is sometimes referred to as a pure discount bond, 
because it must always trade at a price less than par, that 
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is, at a discount to par. The yield of a zero-coupon bond 
with maturity n years is referred to as the n-year spot 
yield or spot rate. The graph that depicts default-free 
spot rates as a function of term to maturity is known as 
the term structure of interest rates. The prices of the 
zero-coupon bonds that define the term structure are 
often referred to as spot prices and, as already stated, 
are always less than par. 

Yet a third way to express the information contained 
in either the yield curve or the term structure is to com- 
pute the yields for forward loans. For example, an inves- 
tor might agree to lend a borrower money in m years and 
to be repaid in full (principal plus all accumulated inter- 
est) in n years from that point in time---that is, at the end 
of m + n years from today. Such an arrangement is 
known as an m-year forward n-year loan. The rate of 
interest for such a loan is referred to as the (m,n) year for- 
ward rate. More generally, the (m,n;t) year forward rate 
refers to the interest rate on a loan that will be arranged t 
years from today, under which an investor will lend a 
borrower money m + t years from today and will be 
repaid in full m + n + t years from today. 

Using the terms defined above, it can be shown that 
the n-year spot price is equal to the product of n positive 
discount factors. The first factor involves only the (0,1) 
year forward rate; the second factor involves only the 
(1,1) year forward rate; and the n-th factor involves only 
the (n - 1,1) year forward rate. Thus, it follows that the 
(n + 1)-year spot price divided by the n-year spot price is 
equal to a positive number that depends only on the (n,1) 
year forward rate. This number will be less than or equal 
to 1 (in other words, it will be a "discount" factor) if, and 
only if, the (n, 1) year forward rate is non-negative. 

The information contained in the sets of current-cou- 
pon yields, spot rates, and forward rates is equivalent. 
(Further material on this subject can be found in the text 
by Sharpe and Alexander [22].) Any one set of yields or 
rates is sufficient to derive the other two sets. Depending 
on the situation, there may be a natural set to use, but all 
carry identical information. For example, when speaking 
with traders or portfolio managers to obtain interest rate 
assumptions for pricing an annuity product, an actuary 
would likely ask about the yield curve. When discounting 
a stream of fixed and certain cash flows arising from 
structured settlement annuity liabilities to obtain a cur- 
rent market value, an actuary would naturally use spot 
rates. When constructing an arbitrage-free theory of 
interest rate dynamics, most financial economists would 
use forward rates as the starting point. 

3. Discrete versus Continuous 
Models  

Throughout this paper, the term state of the worm 
refers to the yield curve prevailing at a particular time 
or epoch. In a model of interest rates, the adjectives dis- 
crete and continuous, without any modifiers, are used 
best to describe the type of states of the world repre- 
sented, not the type of time interval used. In practical 
applications, regardless of the model used, cash flows 
are assumed to occur at discrete time intervals: monthly 
for typical mortgages; quarterly for CMOs, preferred 
stocks, and some floating-rate bonds; and semiannually 
for typical bonds. In asset-liability cash-flow analyses, 
quarter-year periods typically are used. So the basic 
issue is not whether discrete-time models are to be pre- 
ferred to continuous-time models; rather, it is whether 
discrete-state models are to be preferred to continuous- 
state models. 

Most of the recent literature describes discrete mod- 
els, in which the states of the world are represented by 
nodes on a lattice (refer to the papers [2], [1 I], and [18] 
cited earlier). The vast majority of such models utilize 
binomial lattices, on which the world evolves from any 
given state at one epoch to one of two different states at 
the next epoch. These two states at the end of a time 
interval are usually referred to as the up state and the 
down state with respect to the state at the beginning of 
the interval. For reasons of computational efficiency, 
connected lattices are almost always used. From any 
node in a connected lattice, the two-period evolution of 
states up first, then down and the two-period evolution 
of states down first, then up must lead to the same end- 
ing node. In a connected lattice, the world can evolve 
from a single initial state at epoch 0 to one of two states 
at epoch 1, to one of three states at epoch 2, and so on, 
to one of H + 1 states at epoch H. In a connected bino- 
mial lattice model, it is unlikely that the possible states 
of the real world will be sampled sufficiently finely at 
the early epochs. To remedy this problem, the time 
interval can be reduced. For example, with daily inter- 
vals, there are about 30 states at the end of any one- 
month period, but the computational demands of creat- 
ing and using such a model can be enormous, especially 
for long-term assets or liabilities. Moreover, it is unnat- 
ural (and should be unnecessary) to choose a time inter- 
val much shorter than the shortest period between cash 
flows for typical assets and liabilities. Thus, the coarse- 
ness-of-sampling difficulty of connected lattice models 
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remains in many practical situations. Continuous mod- 
els do not suffer this weakness. 

Continuous-state models are described in the aca- 
demic literature by means of differential equations that 
represent continuous-time stochastic processes (refer to 
the papers [8] and [14] cited earlier, and also to the text 
by Hull [13]). For practical applications, though, the 
continuous-time process needs to be sampled only at 
regular time intervals, and the models are reformulated 
as stochastic difference equations. The time interval is 
often chosen to equal the shortest period between the 
cash flows for the assets and liabilities under study. In 
continuous models, one samples paths of interest rates 
by iterating the difference equation. If P interest rate 
paths are used, there are P states of the world repre- 
sented at every epoch. Because the sample of P states at 
each epoch is drawn from a continuous distribution, the 
resulting paths of interest rates do not appear to have 
been constructed artificially. Stated a little differently, it 
is difficult for an experienced portfolio manager to tell 
whether an interest rate path was generated from a good 
continuous model or was constructed from segments of 
actual interest rate history. The same claim cannot be 
made for interest rate paths sampled from a lattice. 

A connected lattice model has a significant weakness 
that can be overcome by using a continuous model. For 
a connected lattice to be arbitrage-free (defined in Sec- 
tion 4), severe constraints have to be placed on how it is 
constructed. These constraints greatly limit the possible 
yield curve dynamics, and for most models, the result- 
ing evolution of yield curves does not correspond ade- 
quately to real-world behavior. The problem arises in 
simple lattice models because a single stochastic fac- 
t o r - the  short-term rate of interest---drives the dynam- 
ics of the entire yield curve, resulting in perfect 
correlation of yield movements across the curve. In the 
real world, the movements of neighboring segments of 
the yield curve may be highly correlated, but they are 
not perfectly correlated. Arbitrary correlation can be 
accommodated in a continuous model, because differ- 
ent parts of the yield curve can be assumed to follow 
correlated stochastic processes. 

Discrete and continuous models can also be com- 
pared for computational efficiency, which depends on 
the type of problem to be solved. In the case of interest- 
rate-contingent, but path-independent, cash flows, as 

are usually associated with pure options, callable 
bonds, and optional sinking fund bonds, backward 
induction algorithms can be used on a lattice to deter- 
mine the optimal exercise strategies. Such algorithms 
are processed backward in time from the latest epoch to 
the earliest epoch, and such algorithms need to evaluate 
conditions occurring only at all states in the lattice, not 
along all paths through the lattice. From epoch 0 to 
epoch H, there are 2 ~ paths through a binomial lattice, 
but only (H + 1)(H + 2)/2 total states, if the lattice is 
connected. Thus, many option-pricing problems can be 
solved efficiently and accurately on a connected lattice. 
Without a lattice (whether connected or not), backward 
induction is not possible. From a purely mathematical 
viewpoint, it is difficult to construct optimal exercise 
strategies for many option problems by doing calcula- 
tions on interest rate paths sampled from a continuous 
model. From a practical viewpoint, note that real-world 
options are exercised by people who manage portfolios 
or trading positions, or who run corporations or other 
businesses. The behavior of these people, as to their 
strategies for rational (if not mathematically optimal) 
exercise of the options they hold, can be modeled suffi- 
ciently accurately that the options are valued properly 
by way of calculations performed on paths sampled 
from a continuous model. 

Many important problems involve path-dependent 
cash flows, for example, the pricing of prepayable mort- 
gages and instruments derived from them, and the valu- 
ation of interest-sensitive insurance liabilities. For such 
problems, the possible paths of interest rates must be 
considered, not merely the possible states of the world. 
A connected lattice offers no special computational 
advantages in these situations. In fact, when path- 
dependent cash flows are involved and a lattice model is 
used, P paths of interest rates will have to be sampled, 
just as if a continuous model were being used. 

In summary, several compelling factors favor the use 
of continuous-state models over discrete-state models: (i) 
a discrete model's lack of computational advantage in the 
common case of path-dependent cash flows; (ii) the need 
to use the same model consistently for all assets and lia- 
bilities, whether their cash flows are path independent or 
path dependent; and (iii) a continuous model's ability to 
sample states of the world sufficiently densely and to 
accommodate realistic yield curve dynamics. 
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. Riskless Arbitrage, Complete 
Markets, and the Risk-Neutral 
World 

4.1 Basic Concepts 
This section is shorter than it could be, so that we can 

proceed to the main subject of the paper. The underlying 
mathematics are generally presented in an imposing 
manner and have been the subject of numerous lengthy 
seminal papers on the application of stochastic process 
theory to financial economics. The topic of riskless arbi- 
trage is dealt with well in the paper by Pedersen, Shiu, 
and Thorlacius [18], and brief comments on the role of 
the risk-neutral world in option-pricing calculations can 
be found in the text by Cox and Rubinstein [6]. 

The concept of a riskless arbitrage opportunity is not 
difficult, ff one asset or portfolio of assets can be sold 
and the proceeds of the sale can be used to purchase a 
different asset or portfolio of assets whose performance 
will be superior to that of the original asset or portfolio 
over a specified holding period (infinitesimal or finite 
depending on the situation), regardless of the states of 
the world during and at the end of the holding period, 
then a riskless arbitrage opportunity is said to exist. One 
need merely sell the first asset or portfolio and purchase 
the second to be guaranteed of having more wealth at 
the end of the holding period without having incurred 
greater risk. The reason that such an opportunity is said 
to be riskless is that wealth can be created without 
investing any capital at all by selling the first asset short 
(that is, selling it before purchasing it), and using the 
proceeds of the short sale to purchase the second asset. 
In this situation, there is no net outlay of funds, but 
there is a guarantee of positive wealth at the end of the 
holding period, because the second asset can then be 
sold for more than is then needed to cover (close out) 
the short position by purchasing the first asset. 

Financial economists and other reasonable people 
assume that no riskless arbitrage opportunities exist in 
an equilibrium world. In other words, prices of assets 
are assumed to adjust continuously to eliminate oppor- 
tunities for riskless arbitrage. For this to occur, a num- 
ber of assumptions must be made: assets are perfectly 
divisible, unlimited short sales are possible, trading 
takes place continuously without transaction costs, 
investors act rationally and prefer more wealth to less 
wealth, and there are no taxes. Although these assump- 

tions are quite stringent, one should not debate too 
strenuously whether small arbitrages can exist in the 
real world for brief periods because the assumptions are 
only approximations to reality. Instead, one should 
regard the concept of an equilibrium world in which 
riskless arbitrage opportunities do not exist as funda- 
mental to constructing a sound financial theory for pric- 
ing assets. 

To see how the concept of riskless arbitrage can lead 
to a theory for establishing the relative prices of assets, 
consider again the situation described above, modified 
slightly. Suppose that an asset for which one wants to 
establish the arbitrage-free price is equivalent to a port- 
folio of different assets for which one knows the prices. 
Equivalence is used in the sense that the performance of 
the single asset and that of the portfolio are identical 
over a specified holding period. Then it follows that the 
single asset and the portfolio of assets must have the 
same prices, or else there would be a riskless arbitrage 
opportunity, wherein the more expensive one could be 
sold short and the less expensive one purchased, guar- 
anteeing a profit without taking any risk. Thus, one 
establishes the arbitrage-free price of the single asset as 
equal to the known price of the portfolio of assets. For 
this approach to be generally applicable and therefore 
lead to a pricing theory, it is necessary to assume that 
the financial markets are complete, meaning that any 
given asset is equivalent to some portfolio of fundamen- 
tal assets. 1 This replicating porO~olio might not be 
equivalent to the given asset over all holding periods. 
The portfolio's holdings might have to be adjusted from 
time to time, perhaps continuously, to maintain the 
equivalence. Having to rebalance the replicating portfo- 
lio is of no consequence, however, because the ability to 
trade continuously absent transaction costs, as assumed 
earlier, enables equivalence to be maintained without 
having to inject additional money into the portfolio; the 
replicating strategy is said to be self-financing. 

ff the financial markets are complete and no opportu- 
nities for riskless arbitrage exist, then the prices of all 
assets can be determined relative to the prices of their 
replicating portfolios. Under these assumptions, the rel- 
ative prices of assets cannot depend on individual inves- 
tors' preferences, which include their differing 
subjective views on the probabilities of occurrence of 
various future states of the word  and their differing 
degrees of aversion to risk. Otherwise, riskless arbitrage 
opportunities would arise. Because relative asset prices 
must be preference-free, we can choose a frame of 
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reference in which the pricing of assets is particularly 
straightforward, namely, the risk-neutral worM. It does 
not mean that we must adopt such a setting, only that we 
are permitted to do so, and that we will obtain the cor- 
rect relative prices for assets ff we do. Black and Scholes 
[3] derived their now-famous formula for the price of a 
call option on a share of non-dividend-paying stock in 
terms of the price of the underlying stock by applying 
the no-riskless-arbitrage condition to a combined posi- 
tion of buying the call option and selling short its repli- 
caring portfolio. They solved the resulting differential 
equation for the price of the call option after establishing 
appropriate boundary conditions. Only later did others 
show that a simpler derivation is possible by moving 
into the risk-neutral world and performing the pricing 
calculation there (for example, refer to [5]). 

What is the risk-neutral world, and why are pricing 
calculations simpler there? In the risk-neutral world, 
investors do not require a premium for assuming risk. 
Thus, assets are priced at their expected present values. 
In other words, risk-neutral investors behave like tradi- 
tional actuaries. When pricing assets, they project cash 
flows along interest rate paths, then discount the cash 
flows at the one-period interest rates occurring along 
the paths, and finally calculate the expected present 
value by weighting the present value for each path by 
that path's probability of occurrence. ~ Moreover, in the 
risk-neutral world, the probabilities of occurrence of the 
various paths do not depend on investors' subjective 
views of the likelihood that different future states of the 
world will arise. I now show how this description of the 
risk-neutral world can be used to construct an arbitrage- 
free model of interest rates. 

In a binomial model, the states of the world repre- 
sented at the nodes of the lattice can be determined 
from the assumed stochastic process for the one-period 
interest rate, for example, a discrete geometric Brown- 
ian motion. Then, the risk-neutral probabilities of up 
and down transitions at each node can be established to 
ensure that all zero-coupon bonds are priced properly 
by the expected-present-value algorithm described 
above. Alternatively, the no-riskless-arbitrage condi- 
tions can be used to establish the possible states of the 
world, given assumed risk-neutral probabilities for up 
and down transitions at each node; for example, 0,. t for 
the up transition and 1 - 0,. t for the down transition at 
the i-th node at epoch t, with 0 < 0,,, < 1. This is the 
approach used by Pedersen, Shiu, and Thorlacius [18]. 
In a continuous model, it is convenient to adopt the 

approach of assuming that the risk-neutral probabilities 
are given, and then generating a finite number of inter- 
est rate paths appropriately. It is usual to generate 
equal-probability paths of interest rates by randomly 
sampling, epoch to epoch, from an assumed stochastic 
process, and to adjust, epoch by epoch, the distribution 
of interest rates to ensure that the no-riskless- arbitrage 
conditions hold. 

4.2 Example." A One-Factor Lognormal 
Model of Short-Term Interest Rates 

The rest of this section is devoted to an example in 
which the natural logarithm of the ratio of the one- 
period rate of interest at epoch t to the one-period rate 
of interest at epoch t - 1 is normally distributed with 
mean ~t and standard deviation a. It is conventional to 
refer to this example as a lognormal stochastic process 
for the one-period (spot) rate. The initial term structure 
of interest rates (all the spot rates or all the spot prices) 
is assumed to be specified exogenously. The objective is 
to generate an arbitrage-free set of P equal-probability 
paths of one-period interest rates out to epoch H, the 
assumed horizon for the desired application. In practi- 
cal applications, limitations on computer memory and 
execution time usually constrain the choice of P to 
between 100 and 1000. 

A single path of one-period interest rates can be cre- 
ated by starting from the given initial one-period rate, 
then randomly sampling from the assumed lognormal 
distribution a one-period rate at epoch 1 and using it as 
the starting one-period rate for randomly sampling from 
the assumed lognormal distribution a one-period rate at 
epoch 2, and so on, out to epoch H. Independently 
repeating this entire sequence of computations P times 
gives rise to P equal-probability paths of one-period 
interest rates. Unfortunately, the set of paths is not arbi- 
trage free. To obtain an arbitrage-free set of paths, all P 
one-period rates at each epoch must be multiplied by an 
appropriate adjustment factor that is the same for all 
Prates, but that differs from epoch to epoch. 3 
The proper approach involves generating and adjusting 
the one-period rates at epoch 1, which evolve from the 
given initial one-period rate at epoch 0; then generating 
and adjusting the one-period rates at epoch 2, which 
evolve from the adjusted one-period rates at epoch 1; 
and so on; and finally generating and adjusting the one- 
period rates at epoch H, which evolve from the adjusted 
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